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1 Classification of 0- and 1-Manifolds

Many thanks to Jiabao Yang, who provided me with his notes, since I missed this lecture.

1.1 Classification of 0-manifolds

Theorem 1.1 (Generalized Poincarè Conjecture). If X is a closed, connected n-manifold,
then X ' Sn =⇒ X ∼= Sn.

We will prove the cases n = 1, 2 by classifying such 1- and 2-manifolds.

Theorem 1.2. All connected 0-manifolds are homeomorphic to {0}.

Proof. If X is a 0-manifold, then for each x ∈ X, there exists and open neighborhood Ux
of x and a homeomorphism φ : Ux → R0 (we called (U, φ) a chart). But R0 = {0}, and
if Ux ∼= {0}, then Ux ∼= {x}. Note that this does not say that every neighborhood is one
point; it says that there exists one neighborhood that is one point. So for each x ∈ X, {x}
is open, which means that X is a discrete space.1 The connectedness of the space forces it
to contain only 1 point.

So if X is a connected, closed 0-manifold, then the statement X ' S0 =⇒ X ∼= S0

vacuously holds true as there does not exist such an X such that X ' S0.

1.2 Classification of 1-manifolds

Lemma 1.1. Let X be connected. If (U, φ) and (V, ψ) are charts on X and U, V ∼= R,
then U ∩ V has at most two connected components. If U ∩ V 6= ∅,

1. There is 1 connected component =⇒ W = U ∪ V ∼= R.

2. There are 2 connected components =⇒ U ∪ V ∼= S1.

1In fact, every second countable (and hence countable) discrete space is a 0-manifold.

1



Proof. If U ∩ V 6= ∅ and U ∩ V is connected, then φ(U ∩ V and ψ(U ∩ V ) are connected.
So they are equal to (a, b) and (c, d), respectively for some a, b, c, d ∈ R∪{±∞} (by one of
our previous theorems about connected subsets of R). If U ⊆ V or V ⊆ U , we are done, as
W = U or W = V . So assume neither is true, and consider ψ ◦φ−1 : (a, b)→ (c, d). This is
a homeomorphism. Assume ψ ◦ φ−1 is increasing (if not, replace (U, φ) by (U,− idR ◦φ)).

Claim: We can assume that a ∈ R, b = ∞, c = −∞, and d ∈ R. If the claim is true,
then assume a < d (otherwise, compose φ with a translation). Let f : (a,∞)→ (a, d) and
g : (−∞, d)→ (a, d) be homeomorphisms such that

(g ◦ ψ)(x) = (f ◦ φ)(x) ∀x ∈ U ∩ V.

Then define χ : U ∩ V → R be

χ(x) =


φ(x) x ∈ U \ V
(f ◦ φ)(x) x ∈ U ∩ V
ψ(x) x ∈ V \ U.

Check yourself that χ is a homeomorphism.

Proof of claim: First note that a < b =⇒ a 6= ∞ and that c < d =⇒ c 6= ∞. If a, c
are both finite, the consider ã = φ−1(a) and c̃ = ψ−1(c). If ã 6= c̃, then X is Hausdorff, so
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there exist disjoint neighborhoods Uã, Uc̃ of ã and c̃, respectively. So (ψ ◦φ−1)(a) = ψ(ã) ∈
(c, d) \ ψ(Uc̃ ∩ V ). Then ψ ◦ φ−1 is increasing, but (ψ ◦ φ−1)(a) is outside a neighborhood
of c in (c, d). So ψ ◦ φ−1 cannot be surjective, and ã = c̃. Now ã = c̃ ∈ U ∩ V , but
a = φ(ã) /∈ φ(U ∩ V ), which is a contradiction. So one of a, c is infinite. Similarly, only
one of b, d is ∞. If a = −∞ and b = −∞, then U ⊆ V , and if c = −∞ and d = ∞, then
V ⊆ U . So either:

1. a ∈ R, b =∞, c =∞, and d ∈ R,

2. a = −∞, b ∈ R, c ∈ R, and d =∞.

In the second case, just switch the names of U and V . This proves the claim.
If U ∩ V has 2 connected components W1 and W2, then since U and V are connected

but U ∩ V is not, we must have U 6⊆ V and V 6⊆ U . As above,

φ(W1) = (a, b), φ(W2) = (a′b′),

ψ(W1) = (c, d), ψ(W2) = (c′, d′).

We can assume that φ(W1) = (a,∞) and φ(W1) = (−∞, d) for some a, d,∈ R. Similar
analysis holds for W2, so we conclude that

φ(W2) = (−∞, b′) ψ(W2) = (c′,∞)

for some b′, c′ with b′ < a and d < c′. So we can write down a homeomorphism U∩V → S1.
Write S1 = Ũ ∪ Ṽ , where

Ũ = {e2πix : x ∈ (1/4, 1)}, Ṽ = {e2πix : x ∈ (−1/4, 1/2)}.

Then write a homeomorphism such that U → Ũ and V → Ṽ .

If U ∩ V has 3 connected components W1,W2,W3, then φ(Wi) ⊆ R has to be bounded
for some i. But this is not possible (we skip the details due to lack of time).

We can now prove the desired classification theorem.
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Theorem 1.3. If X is a connected 1-manifold (perhaps with boundary), then X is home-
omorphic to R, S1, [0, 1], or [0, 1).

Proof. Pick a chart (U, φ) in X such that φ : U → R and such that (U, φ) is maximal; i.e. if
(V, ψ) is another chart ψ : V : R, then U ∩V = ∅ or has two components. If X 6∼= S1, then
ant other V as above must be disjoint. If X = U , then X ∼= R. If not, there exists a point
p ∈ X \ U such that a chart (V, ψ) around p has V ∩ U 6= ∅ (as X is connected). V must
be homeomorphic to R+, and U ∩ V = V \ {p}. If X = U ∪ {p}, write a homeomorphism
X ∼= [0, 1).

We will redo this proof next lecture, but here is the idea. If X 6∼= [0, 1), then X ∼= [0, 1];
otherwise, we will get a contradiction.
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